A. Probability Function

**B. Distribution Function**

C. Probability Distribution

D. Probability Density Function

# RANDOM VARIABLE AND PROBABILITY DISTRIBUTIONS

## A function probability that a random variable of x has a value less than is called _____________?

A. Random function

**B. Distribution function**

C. Continuous function

D. probability function

## If E(x) is the expected value of X then E[x – E(x)]= ___________________?

A. E(x) – E(x)

B. E(X) – 0

**C. 0**

D. E(x) + E(x)

## The mathematical exception of x + y is equal to ________________?

A. E(x + 0)

**B. E(x + x)**

C. E(x) + E(y)

D. E(y)

## A random variable is ____________ ?

A. Not a function

B. A continuous variable

**C. A function**

D. None of these

## A continuous random variable which can assume all possible values on scale in a given _______________?

**A. Interval**

B. Point

C. Time

D. Sample space

## The number of defective bulbs in a lot is example of ____________?

A. Continuous variable

**B. Discrete variable**

C. Function

D. None of these

## For a probability density function (pdf), the probability of a single point is_____________?

A. 1

B. 2

**C. 0**

D. Constant

## What is the probability that a ball drawn at random from a jar ?

A. 0.1

B. 1

C. 0.5

D. 0

**E. Cannot be determined from given information**

## The variance of randomvariable of x then var(x) = E[x-E[x]2 = E[________]?

A. (X – A)2

B. E(x)

C. (x – u)2

**D. (x – 4)2**